Posted on 3 Comments

Choosing the Right Power Cord – Rack Optimization Tips

Choosing the Right Power Cord - Rack Optimization Tips - AnD Cable Management Blog

There are several aspects of optimizing data centers, from making the best use of space, time, power, and personnel. But there are some surprisingly simple solutions that are often overlooked with power cords, especially when it comes to rack optimization. Here are just a few of them.

Choosing the Right Power Cord - Rack Optimization Tips - AnD Cable Management Blog

SVT vs. SJT Power Cords

One of the first needs of a data center is power, and while there are debates about DC powering data centers, for the most part, AC power is the answer, and that means that a part of rack optimization includes the routing of power cords

Related to that is the durability of these cords, their flexibility, and to an extent their cost. However, there is a certain resistance to making the switch from more common SJT cords to their younger, smaller brother, SVT power cords. 

The issue is primarily perception. SJT power cords are thicker, so they must be better, right? The answer is more complex than that. To understand, we need to look briefly at what these cords actually do:

  • Deliver power safely to components in the rack system
  • Have the flexibility to be routed through racks and between delicate components
  • Must be color coded to assist with organization and prevent mistakes during moves and changes

That sounds pretty basic, right? Power cables, and many other cables used in data centers essentially are. So why choose one over the other?

SVT Power Cord Advantages

The primary difference between SVT and SJT cords is thickness, which plays a significant role. Both are portable, can be color coded, easily withstand the heat of the data center environment, and are capable of carrying the exact same loads. 

SJT cords have been standard for a long time, and their thickness may make them seem “tougher”. But thinner SVT cords are capable of more bend angles, take up less room (facilitating airflow), and are lighter. These aid rack optimization and organization.

But of course, SVT cords also cost less per unit. Over large moves and changes or even when designing a new data center, this can make a huge difference. 

In this case, thinner (and cheaper) is better. 

Power Cords are Only Part of the Picture

Of course, when we start talking about power cords, it is important to go back to some of the basics of rack optimization. 

  • First, use 28 AWG “skinny” patch cords. They are 36% thinner than other cables, which allows you to use high-density patch panels. This simple change in cords saves you a lot of rack space, and cuts the RU needed for patch panels in half. Skinnier patch cords also allow for more airflow as well
  • Second, replace 1RU and 2RU horizontal cable managers with AnD Cable Products Zero U Cable Management Racks. They’ve been designed to not take up the valuable vertical space typical cable managers do, but instead install in the same U as the device, saving significant rack space

Once you have done these two things, you’ll often more than double the ports you can fit in a single rack. Not only will you save space and money, and prevent the spaghetti mess of wiring often found in server racks after moves and changes, but you will save additional rack footprints, allowing you to increase density without losing computing power or memory. 

WHITEPAPER – Optimizing Server Cabinet Rack Space to Maximize Efficiency and Reduce Costs

Optimizing Server Cabinet Rack Space to Maximize Efficiency and Reduce Costs FREE Guide - AnD Cable Products

Smart optimization can help you increase rack space and realize significant equipment cost savings. Read our step-by-step guide that shows you how – and how much you could save.

  • How Much Rack Space You Could Save
  • How to Optimize for Maximum Efficiency
  • Savings for New and Retrofit Installations
  • Overall Cost and Space Savings Post-Optimization

Optimizing Other Cables

There are other steps you can take as well. Optimizing your Ethernet cables (while taking into account power, latency, and reach), looking at Direct Attach Copper (DACs) cables, Active Optical Cables (AOCs), and fiber optic cable assemblies for optimization opportunities, and keeping up with innovations like plastic polymer cables can also set you up for the most optimal use of cables and cords in your data center.

The last item highlights perhaps the most important thing you can do to optimize your data center: keeping up with evolving technology. There are always new developments, faster and lighter cords, better power solutions, and more. Consider what you can do each time to make moves or changes to increase the efficiency of your data center no matter what size it is.

The good news is, you don’t have to do this alone. At AnD Cable, we keep up with the newest and best solutions for everything you need for your data center, from racks to cable management to cords and cables. We offer remote monitoring solutions and more. 

Have questions about data center solutions? Do you want to talk about optimizing your  rack usage and cable management? Get in touch today! We can’t wait to start a conversation about how we can help you. And if you’re ready to get started, request a quote. We’ll be with you every step of the way. 

About the Author

Louis Chompff - Founder, AnD Cable Products, Rack and Cable ManagementLouis Chompff – Founder & Managing Director, AnD Cable Products
Louis established AnD Cable Products – Intelligently Designed Cable Management in 1989. Prior to this he enjoyed a 20+ year career with a leading global telecommunications company in a variety of senior data management positions. Louis is an enthusiastic inventor who designed, patented and brought to market his innovative Zero U cable management racks and Unitag cable labels, both of which have become industry-leading network cable management products. AnD Cable Products only offer products that are intelligently designed, increase efficiency, are durable and reliable, re-usable, easy to use or reduce equipment costs. He is the principal author of the Cable Management Blog, where you can find network cable management ideas, server rack cabling techniques and rack space saving tips, data center trends, latest innovations and more.
Visit https://andcable.com or shop online at https://andcable.com/shop/

Posted on 1 Comment

Optimizing Ethernet in Data Center Networks

Feature Ethernet Data Center Networks - AnD Cable Management Blog

Demand for faster data transfer, and more of it, has exploded exponentially over the last decade. Even before the pandemic, growth was already at exponential rates, but with the work from anywhere trend and more people gaming and streaming from home, demand rose even further. 

With it came an explosion in innovation, and a necessary one. Data Center Interconnects (DCI) Ethernet cable speeds increased from 100 Gb applications to 400 Gb and beyond. Server speeds have gone from 10 Gb to 25 Gb and beyond, with 100 Gb speeds on the horizon, and already in place in some data centers. 

The result is that data centers are now frequently operating like edge computing networks. Here is how it works. 

Ethernet Data Center Networks - AnD Cable Management Blog
Ethernet cable speeds have increased from 100 Gb applications to 400 Gb and beyond

Optimizing Ethernet in Data Centers

There are four factors in optimizing data center ethernet use: speed, power, reach, and latency. Speed is already being enhanced and optimized by the creation of better and more modern cable designs. But for the other areas, there is still work to be done. 

Power

When it comes to power, many data centers have gone green, with their own renewable energy sources. In most cases, they have access to all the power they need. The key is to use it in the most efficient way possible. With more power comes the issue of design, including hot and cold aisle design choices and more. 

Reach

Data center architecture must take a holistic approach, whether you are starting from scratch with a new data center or making moves and changes to update its current infrastructure. Everything from switches and routers to transceivers and overall physical design, reach must be weighed by efficiency vs. cost.

Latency

Finally, latency is related to the final user experience. When it comes to gaming or video conferencing, low latency is the expectation, while when conducting internet searches, it’s not as critical, but can still be an issue for users. As speed increases and fast becomes the norm, latency expectations change with it. 

These three areas are critical to how ethernet is used in data centers, but it is far from the only one. 

Definitive Guide to Understanding Ethernet Patch Cords in Modern Networks - AnD Cable Products Whitepaper
Ethernet cables differences, RJ45 Connectors and T586B vs T568A

Infrastructure Processing Units

How we manage this need for speed is changing on the hardware and software side of things as well. Infrastructure Processing Units (IPUs) run Software Defined Networking (SDN) programs away from the server core. This saves critical server bandwidth, but it comes with an additional load cost. 

As these advances develop, the demand for new and better ethernet cables arises. And as ethernet cables advance, IPUs hardware and software applications evolve as well. Both improve in sync with the other. It’s a developing relationship, but one data center manager’s must take advantage of. 

Edge Computing Centers 

One solution to speed is to move the data center closer to the end user. This has been a developing trend, but increasingly data centers are expanding to distributed models where the interconnections between resources drive both power and speed, creating a better overall experience for the end user, and reducing latency. 

This comes with challenges. As edge computing rapidly becomes the norm, that latency KPI gets lower and lower. Low latency is key, and specifically, DCI applications are critical to meeting new standards. Ethernet connections are a vital part of this change and growth.

The Need for Speed

What’s needed to make all of this work? The first is optical transceivers, which allow data centers to make reductions in the power they use, but enables them to increase bit rates at the same time. This allows for the increase of speed in the leaf-spine connections, a critical component in any data center, but especially those that are hyperscaling. 

This does not come without challenges, as not all ethernet cables are created equally, and interoperability can become an issue. 

To help with this, high-speed breakout cables are often used. These cables have one end that supports the aggregate rate and the other end is a series of disaggregated interfaces. With their speed comes performance challenges, especially over distances. However, there has been some rapid development in this area. 

The New Normal

As 400 Gb speeds become the norm and data centers are increasingly on the edge, there are many advantages. Distributed networks mean easier disaster recovery and backup planning and create the ability to use shared resources to meet shifting demands. 

However, this creates some challenges with testing and maintaining KPIs. Interoperability remains a key component of successful deployments. 

At AnD Cable Products, we understand these challenges. We offer everything your data center needs, from Zero U rack solutions to every type and style of cable you need. We can customize cables for your application, and offer a variety of other hardware solutions to meet your data center needs. When you are ready to upgrade your cables, make moves and changes, or even deploy a new data center or edge computing center, contact us. We’d love to be your partner in innovation

About the Author

Louis Chompff - Founder, AnD Cable Products, Rack and Cable ManagementLouis Chompff – Founder & Managing Director, AnD Cable Products
Louis established AnD Cable Products – Intelligently Designed Cable Management in 1989. Prior to this he enjoyed a 20+ year career with a leading global telecommunications company in a variety of senior data management positions. Louis is an enthusiastic inventor who designed, patented and brought to market his innovative Zero U cable management racks and Unitag cable labels, both of which have become industry-leading network cable management products. AnD Cable Products only offer products that are intelligently designed, increase efficiency, are durable and reliable, re-usable, easy to use or reduce equipment costs. He is the principal author of the Cable Management Blog, where you can find network cable management ideas, server rack cabling techniques and rack space saving tips, data center trends, latest innovations and more.
Visit https://andcable.com or shop online at https://andcable.com/shop/

Posted on 1 Comment

Hot and Cold Aisle Containment in Data Centers

Feature Hot and Cold Aisle Containment in Data Centers - AnD Cable Management Blog

Data centers are often made up of hot and cold aisles, and the design of the hot / cold aisle data center is far from new. However, the traditional setup causes warm air exhaust from one aisle to flow into the air intake of the next, meaning that the overall efficiency of the data center is impacted. And really, that’s what hot and cool aisle containment is all about.

Hot and Cold Aisle Containment in Data Centers - AnD Cable Management Blog
Balancing hot and cold aisles is more important than ever to running an efficient data center

As rack density increases, especially in edge data centers and hyperscale data centers, the need for efficiency increases. This is also impacted by the fact that there are more green data centers, who may be generating their own energy using solar or other renewable resources. 

How does containment work and how does it impact your data center?

Remote Monitoring and Temperature Control

Of course, before we get to containment itself, it’s a good reminder to revisit physical layer monitoring. To know how effective any containment effort is, it’s necessary to monitor temperatures. This is most often done with temperature indicating panels, three per rack at the top, middle, and bottom, so that intake temperatures can be monitored regularly.

Of course, someone entering the area to manually check temperatures is yet another disruption to airflow, so remote monitoring as a part of physical network security is essential. This allows managers not only to monitor these temperatures, but receive alerts and take action if something goes wrong. 

A150 Remote Physical Layer Network Security Monitoring Elements
The A150 Remote Physical Layer Remote Monitoring system tracks temperature among many other elements that reduce risk and increase efficiency in data centers

But the most important fact for this discussion is to know what temperatures are so that efficiency and the effectiveness of containment can be monitored.

What is Aisle Containment?

Aisle containment is essentially isolating aisles by relative temperature. Essentially it means placing doors at the end of each aisle, and then adding panels, or barriers, from the top of the cabinet upwards. 

The more airtight this containment is, the more efficient cooling can be, and the easier it is to manage airflow. It’s pretty simple, but there are a couple of different approaches, each with its own pros and cons.

Hot vs. Cold Aisle Containment

There are two ways to manage aisle containment: hot and cold aisle containment. And they work exactly the way they sound.

  • Hot Aisle Containment: Hot aisles are contained, leaving the rest of the room at a more comfortable cool aisle temperature. It’s also easier to manage in many cases.
  • Cold Aisle Containment: Cold aisles are isolated or contained, which means the rest of the room stays at the warmer hot aisle temperature. This can also make getting the right amount of airflow tricky due to pressure changes, but managed properly it can deliver the most uniform temperature air to servers.. 

Choosing the right type of aisle containment for your data center depends on your situation, but there are some differences between new data center construction and retrofitting an existing data center.

Retrofitting vs. New Data Center Construction

In the case of a new data center, most of the time hot aisle containment is the method of choice. This is easier to set up in a new data center, as that allows you to start with the type of containment you need, and to set up HVAC systems and sensors to accommodate that. 

This creates an easier environment for technicians to work in when necessary, and is overall a more efficient choice. However, things are different when it comes to existing data centers

Existing data centers are easier to retrofit with cool aisle containment. While there is some additional monitoring, the way cooling systems work simply means this process is simpler in a currently operating system without creating expensive downtime for making moves and changes and installing containment. 

That doesn’t mean that no new data center will be built with cool aisle containment. It simply means that hot aisle containment is a more frequent choice. 

Partial Containment Solutions

When it comes to retrofitting, sometimes full aisle containment in either format is not possible. In those cases, partial containment is a solution. How is this achieved?

Often plastic strips can be used, similar to those you would go through walking into an industrial freezer or even certain restaurant kitchens. These can be hung at the end of aisles and from the tops of servers to the ceiling, just like other containment methods.

While not as effective, partial containment can be easy to retrofit and implement, and in some cases is about 75% as effective as full containment. For existing data centers looking for a quick and inexpensive efficiency solution, partial containment is a viable option. 

But containment is just a part of rack cooling solutions, and there are some new and exciting ones. 


WHITEPAPER – Optimizing Server Cabinet Rack Space to Maximize Efficiency and Reduce Costs

Optimizing Server Cabinet Rack Space to Maximize Efficiency and Reduce Costs FREE Guide - AnD Cable Products

Smart optimization can help you increase rack space and realize significant equipment cost savings. Read our step-by-step guide that shows you how – and how much you could save.

  • How Much Rack Space You Could Save
  • How to Optimize for Maximum Efficiency
  • Savings for New and Retrofit Installations
  • Overall Cost and Space Savings Post-Optimization

The Addition of Liquid Cooling

Data center cooling has evolved from older, inefficient systems to more contemporary ones in a relatively short period of time. However, one thing that has been around for a while but is experiencing a boom in denser, modern data centers is liquid cooling. 

Why? Well, in most cases liquid cooling is more efficient than air cooling in data centers, and when the two are used in conjunction, generally the best results can be achieved. The larger data centers get, the more power they consume, the greater the push towards a blended approach to cooling that not only saves power and is better for the environment, but prolongs the life of equipment and saves space as well. 

But even with the addition of liquid cooling, it’s all about efficient use of rack space and the airflow around them. 

It’s All About Airflow

No matter what kind of aisle containment is used, and no matter how efficient the cooling system, saving space, improving efficiency, and keeping things organized, maximizing rack space efficiency and airflow is vital.

That’s why data centers choose ZeroU racks and cable management systems. They not only help avoid the spaghetti mess and all the cable issues that can arise from it, but also help maximize airflow and save significant rack space in any system.

Whether you are retrofitting a data center or engaged in new construction, we have the rack system that’s right for you. 

Contact AnD Cable Products today for all of your cable, rack, and physical network security needs. We’d love to start a conversation about the right solution for you. 

About the Author

Louis Chompff - Founder, AnD Cable Products, Rack and Cable ManagementLouis Chompff – Founder & Managing Director, AnD Cable Products
Louis established AnD Cable Products – Intelligently Designed Cable Management in 1989. Prior to this he enjoyed a 20+ year career with a leading global telecommunications company in a variety of senior data management positions. Louis is an enthusiastic inventor who designed, patented and brought to market his innovative Zero U cable management racks and Unitag cable labels, both of which have become industry-leading network cable management products. AnD Cable Products only offer products that are intelligently designed, increase efficiency, are durable and reliable, re-usable, easy to use or reduce equipment costs. He is the principal author of the Cable Management Blog, where you can find network cable management ideas, server rack cabling techniques and rack space saving tips, data center trends, latest innovations and more.
Visit https://andcable.com or shop online at https://andcable.com/shop/

Posted on Leave a comment

The Data Link Layer – How DAC and AOC Cables Can Work For You

Feature - The Data Link Layer - How DAC and AOC Cables Can Work For You - Cable Management Blog

As the need for data storage and speed increases, the need for hyperscale data centers has increased. So has the need for edge data centers as well. While large-scale centers serve companies like Amazon, Microsoft, and Google, other organizations are looking at smaller data centers closer to the end-user. In both cases, the data link layer of the data center is critical. Enter Direct Attach Copper (DACs) cables and Active Optical Cables (AOCs).

The Data Link Layer - How DAC and AOC Cables Can Work For You - Cable Management Blog
The data link layer of the data center is critical to ensuring your resources and used to their full potential

What is that data link layer? It’s the physical layer, the connection between servers that ensures all the computing resources are used to their full potential. The speed and integrity of these connectors can make a huge difference. 

They include Direct Attach Copper (DACs) cables, Active Optical Cables (AOCs), and fiber optic cable assemblies connected into transceivers throughout the data center. How does each one work, and why are they so critical to installation, maintenance, and deployment?

The Need for Speed

There are two aspects to the need for speed: the need for speed in shorter cables between servers, and the need for speed over longer distances. Different kinds of cables work differently in each instance. 

For example, DACs are most often used over short distances, connecting units in the same server rack. They can be active or passive – active connections are part of signal processing circuitry, and passive connections simply carry power. In the case of a DAC, the cable is made of copper rather than fiber. 


WHITEPAPER – Understanding Stranded and Solid Conductor Wiring in Modern Networks

Understanding Stranded and Solid Conductor Wiring in Modern Networks - AnD Cable Products Whitepaper

An overview of the differences between stranded and solid conductor wiring, the properties of each and the best cable type to use in a variety of typical settings.

  • Types of Stranded and Solid Conductor Wiring
  • Comparison of Electrical Properties
  • Factors Impacting Attenuation / Insertion Loss
  • Choosing the Right Cable


AOCs usually connect devices within the same row, but they cover longer distances than their copper cousins. However, they do not work in End of Row (EOR) or Middle of Row (MOR) configurations where certain types of patch panels are used. They are usually provided in fixed lengths from a few meters long to more than 100 meters. AOCs are active and include transceivers, control chips, and modules.

Both are fast, similar in speed to optic fiber cables, but that speed can be compromised by cable damage or in the case of DACs, electromagnetic interference. Both must be tested with a tool that can accept dual SFP/QSFP transceivers and generate and analyze traffic.

So how do you test them? Well, there are methods that include automation, but there are other factors to consider. 

Automation Matters

 Speed drives us to DACs and AOCs in some cases, but they can become damaged in a variety of ways. This often doesn’t even happen in the installation process, but in the shipping and handling before they even arrive at the data center. Sometimes it happens if they are stored and moved frequently. 

So the first place to test them is before installation. This ensures they are working before they are put into service. It’s easy to see how testing all cables at installation can be costly and time-consuming but not testing early can be costly later on. 

The solution is rapid, automated testing that can be done by running a test pattern where the results can be compared to a Bit Error Rate (BER) threshold. DAC and AOC cables including breakouts usually have a BER rating on their datasheets, especially when they are meant to be used with devices implementing the RS-FEC algorithm.

The tests only take a minute per cable and result in reports including a cable identifier, such as the serial number, identifying clearly any faulty equipment. 

Proper Power Planning

What’s the other advantage of DACs and AOCs? Energy savings. Point to point high-speed cables take less power and can save money, especially at scale. While DACs offer more dramatic numbers per cable, AOCs offer savings as well when multiple transceivers are replaced by cables. 

They’re not ideal for every case in every data center, but where they can be used as a key part of deployment, they can provide significant energy savings.

Living on the Edge Deployment

The other argument for DAC and AOC deployment and testing at installation exists on the edge. More Edge deployments force centers to increase speed, security, and efficiency at the same time as they minimize latency.

Opting to wait and address any connectivity issues during troubleshooting results in costly mistakes and skipping troubleshooting steps in favor of speedy repairs, sometimes those that are not necessary. Not only is this costly – cables can vary from tens of dollars to thousands but it can also lead to confusing labels and the increased probability of unplugging a live cable.

The fact that DACs and AOCs can be tested so quickly and easily at the time of installation is another great argument for their use in the data link layer. But no matter what cable configuration your data center uses, from point to point high-speed cables to other fiber and optical options, the management of that data link layer is critical to smooth data center operations.

Looking for High Speed Cables?

WD 25G SFP28 SFP+ DAC Cable - 25GBASE-CR, SFP28 to SFP28 Passive Direct Attach Copper, Twinax Cable

Ready to start optimizing your data link layer? Have questions about what cables might be right for you and your application? Whether you are deploying a brand new data center or making moves and changes, we’re here to help. Contact AnD Cable Products today for more information. We’re here to help every step of the way. 

About the Author

Louis Chompff - Founder, AnD Cable Products, Rack and Cable ManagementLouis Chompff – Founder & Managing Director, AnD Cable Products
Louis established AnD Cable Products – Intelligently Designed Cable Management in 1989. Prior to this he enjoyed a 20+ year career with a leading global telecommunications company in a variety of senior data management positions. Louis is an enthusiastic inventor who designed, patented and brought to market his innovative Zero U cable management racks and Unitag cable labels, both of which have become industry-leading network cable management products. AnD Cable Products only offer products that are intelligently designed, increase efficiency, are durable and reliable, re-usable, easy to use or reduce equipment costs. He is the principal author of the Cable Management Blog, where you can find network cable management ideas, server rack cabling techniques and rack space saving tips, data center trends, latest innovations and more.
Visit https://andcable.com or shop online at https://andcable.com/shop/

Posted on 1 Comment

Faster Polymer Plastic Cables? Not So Fast!

Faster Polymer Plastic Cables? Not So Fast - AnD Cable Management Blog

Just about a year ago a group from MIT demonstrated a polymer plastic cable the size of a human hair that could transmit data faster than copper – much faster. 

How fast? Well, they recorded speeds of more than 100 gigabits per second! So where is this new technology and where is it headed? Well, here are some answers for you.

Faster Polymer Plastic Cables? Not So Fast - AnD Cable Management Blog
MIT demonstrated a plastic polymer cable the size of a human hair. Photo: MIT, https://news.mit.edu/2021/data-transfer-system-silicon-0224

The Need for Speed

First, perhaps we need to qualify what this speed is, and why computers and data centers need it. 

The first big deal is that these cables act like copper – they can directly connect devices without the need to reformat data. While standard fiber cables are faster, they require a converter to change light signals to electrical signals at each end of the connection. 

Of course, there are a lot of immediate uses for faster cables like these, including in data centers. Artificial intelligence applications like self-driving cars, manufacturing, and countless other applications where data provided as close to “real-time” as possible makes a huge difference. 

But of course, as with all such applications, speed is not the only factor.

Distance

At the moment in a laboratory setting, these cables are only good for short distances, not long ones. That doesn’t mean researchers are not confident in the impact these cables can have. 

Think of a polymer plastic cable that is both durable and lightweight, and can transmit terabits of data over a meter or beyond? Theoretically, this is the possibility, with the idea that such cables could replace USB and even the faster USB-C cables. 

Even at shorter lengths, such cables could be exceptionally useful for transferring data between more than one chip inside a device. The thinner fibers could be used to revolutionize these applications as well, making even smaller and more efficient devices possible. 

We Have the Power

The problem as it currently exists is that transferring data through copper cables consumes more and more power, to the point of diminishing returns, and such transfer generates heat – a lot of heat that must be dissipated and can actually cause damage to cables. 

The fiber optic alternative is not always compatible with silicon chips without the light to electronic transfer mentioned above. The idea behind polymer plastic is to save energy, generate less heat, and still allow for compact connections. 

If this is such a great idea, why is it not on the market yet?

From Laboratory To Market

To transfer such technology from the lab to the market takes a lot of work and requires some potential changes. First, the technology needs to be tested and perfected at a higher level. Since the concept has been established, other labs are now working on it as well, and this could be the fastest part of the process. 

But there is more:

  • New standards would have to be developed for IEEE, established, and agreed upon
  • Potentially, new connectors would need to be created for these cables to interface with other chips and other devices
  • The manufacture of new cables needs to be established at scale before they can become commonly used in any application.
  • A supply chain or the use of existing ones must be established to get cables from the plant to the end-user.

Does this sound like a lot? It is, but it has been done before. The question is, what do those who are building data centers – and would use these cables on a regular basis – think?

The Future is Now

“The need for speed has never been so great,” Bill Lambert, a data center engineer told us. “Ten years ago, no one would even have been talking about devices that would need this kind of speed. We would have told you we would never need that capacity.”

And he’s right. Many of the devices we now use every day, and their speeds would have been unimaginable before, let alone the amount of data we use. But the more we look at the uses for real-time data, the faster we need to get that information from one place to another. 

“It’s like the work from anywhere revolution,” he told us. “The last two years have totally changed what data transfer and speed look like, inside and outside of data centers. It’s a sure bet that the next few will revolutionize these ideas again.”

In an ever-changing field where speed and data matter more than ever, science has just begun to catch up with what we need. And we’re lucky enough to be a part of it. 

Have a question about updating the infrastructure in your current data center or want to learn more about building the infrastructure in a new one? Contact us here at AnD Cable Products. We have everything from the cable management you need to remote monitoring and more. 

We’re glad to be your partners going forward to tomorrow and beyond. 

Physical Layer Environment Network Security Monitoring and Control

A150 Physical Layer Environment Network Security Monitoring and Control System Brochure

Full visibility, network security and control of your physical layer environment. Monitor your entire hybrid cloud and IT infrastructure from a cloud-based, integrated dashboard:

  • Introducing the A150 System
  • A150 System Architecture – High-Level Overview
  • A150 System Features
  • System Controller Hardware and Specifications
  • Monitoring Controllers, Probes and Sensors

About the Author

Louis Chompff - Founder, AnD Cable Products, Rack and Cable ManagementLouis Chompff – Founder & Managing Director, AnD Cable Products
Louis established AnD Cable Products – Intelligently Designed Cable Management in 1989. Prior to this he enjoyed a 20+ year career with a leading global telecommunications company in a variety of senior data management positions. Louis is an enthusiastic inventor who designed, patented and brought to market his innovative Zero U cable management racks and Unitag cable labels, both of which have become industry-leading network cable management products. AnD Cable Products only offer products that are intelligently designed, increase efficiency, are durable and reliable, re-usable, easy to use or reduce equipment costs. He is the principal author of the Cable Management Blog, where you can find network cable management ideas, server rack cabling techniques and rack space saving tips, data center trends, latest innovations and more.
Visit https://andcable.com or shop online at https://andcable.com/shop/

Posted on 3 Comments

How a Fire-Rated Power Distribution System Reduces Risk

How a Fire-Rated Power Distribution System Reduces Risk - AnD Cable Management Blog

Fires are not super common in data centers, but they do happen, and most often when they do, they are not reported (at least not in the news). Much of the reason for this is that fires are usually small and quickly contained. It is unusual for a data center to become fully engulfed. 

Even when such fires are reported on, details can be sketchy, causes, and investigations hidden behind NDA’s and are therefore difficult to learn from. While companies want to retain control over the narrative and how it impacts their reputation, the information around fires can and should be shared within the industry to prevent further similar events. And there are some things you can do now – such as remote monitoring – to keep your staff and facilities safe. 

Remote monitoring can help your data center keep staff and equipment safe from fire damage

The OVHCloud Incident

On 10 March 2021, near midnight local time, a fire started in the OVHCloud SBG2 data center, quickly got out of control, and even damaged two other nearby data centers. The fire started near two UPS units, one of which was worked on that same day. 

The company is considered a European alternative to the giant US cloud operators and is a key participant in the European Union’s GaiaX cloud project. Data centers serve some key functions in the French government, the UK vehicle licensing department, and others. Operations were directly impacted by the fire, although the company did have backup data centers, and quickly restored service to most customers. 

But poor design and operational practices that seem to sacrifice dependability for innovation have caused some issues, including major outages, for OVHCloud. The fire just punctuated an ongoing issue but also caused many data center operators and customers to pause and think about something probably not mentioned often enough: the risk of fire in data centers. 

What are the Fire Risks?

When broken down there are a few key fire risks common to all data centers, and most of the time they are relatively easy to mitigate.

  • Electrical Equipment – temperature changes can increase this risk, and of course, a source of risk is also backup power equipment. Generator rooms that contain gas or diesel fumes can create intense fires quickly that would be hard to fight.  
  • Cables – data center power cables are usually not enough to start a fire by themselves, but a damaged cable can release sparks or overheat and cause a small fire or thermal incident that can then spread. Proper cable management and monitoring of underfloor and overhead cabling can help prevent these events. 
  • HVAC Infrastructure – heating and cooling units present some fire danger to data centers and should be inspected often and monitored carefully. Its operation is also critical to maintaining optimal temperatures in the data center to prevent other thermal events. 
  • External Fire Sources – California wildfires. The recent blaze in Boulder. The Texas fires last year. All are examples of external fire risk to data centers, specifically those Edge data centers in less populated areas. 

Most of these can be controlled by properly managing the data center, but there are some events that can only be prepared for. Having fire suppression systems and plans in place is critical regardless of the likelihood of the danger. 

Fire Prevention Systems

Of course, the best prescription for dealing with fire is prevention. The key to this in the modern data center environment is a complete remote monitoring system. The A150 Network Monitoring System is designed specifically for data centers, IT rooms, and confidential lab operators with virtual graphics showing temperature, rack power consumption, and humidity. 

But most importantly for this topic, the system provides alerts for mission critical events like the sudden temperature changes associated with fires, smoke alarms, and sprinkler activation alerts. You can also be alerted to things like power spikes, a rise in server temperatures, or even UPS unit failures so you can make emergency repairs and mitigate fire risk before one starts. 

The reality is that anything you can do to prevent fire before it happens is preferrable than anything you can do to suppress and extinguish an active blaze. However, those are contingencies you need to prepare for. 

Fire Rated Power Distribution Systems

There are two primary principles when it comes to any fire safety plan, anywhere. They are the two P’s: prevent (which we discussed above) and protect. Part of both of these is the vital role of uninterrupted power. Enter the role of a fire-rated busbar trunking system.

These systems can be operational for a period of up to two or even three hours depending on their ratings. They’re also cased in a fire-retardant self-extinguishing resin that essentially protects the power supply itself. The idea is that this will give first responders time to extinguish the fire before it can spread.

How do you choose the right one for your data center? Well, there are established guidelines that indicate the type of fire, the duration they were tested for, how they endured water spray, such as that from sprinkler systems, and the power supply integrity in a fire situation.

Technically, they look like this: 

  • BS IEC 60331-1: 2019 – Tests for electric cables under fire conditions; circuit integrity
  • BS 8602:2013 – Method for assessment of fire integrity of cast resin busbar trunking systems for the safety-critical power distribution to life safety and firefighting systems
  • BS 6387:2013 (CWZ Protocol) – Test method for resistance to fire of cables required to maintain circuit integrity under fire conditions. Fire-resistant cables are classified by a sequence of symbols (for example, CWZ) in accordance with the fire resistance criteria they meet, the selected test temperature, and the length of the fire resistance test per BS 6387
  • NFPA 75 – Standard for the fire protection of IT equipment
  • ISO 834 – Fire resistance tests- elements of building construction
  • ATEX & IECEx – ATEX certification is given to equipment that has gone through rigorous testing outlined by European Union directives and proved safe to use in specific environments with explosive atmospheres, according to the zone/s they are certified to be used in.

The most important part of this discussion is the planning stage. It’s vital to have a disaster plan in place and address both prevention and keeping a fire from happening in the first place to protect the data center and minimize the fire’s impact. 

The more we learn from data center fires, the more likely we are to be able to prevent them going forward, and mitigate the damage in the rare event they do occur. 

Need some advice on cable management, remote monitoring, or other aspects of data center planning? Contact us – we’d love to start a conversation about how we can help you with your data center management plan. 

Physical Layer Environment Network Security Monitoring and Control

A150 Physical Layer Environment Network Security Monitoring and Control System Brochure

Full visibility, network security and control of your physical layer environment. Monitor your entire hybrid cloud and IT infrastructure from a cloud-based, integrated dashboard:

  • Introducing the A150 System
  • A150 System Architecture – High-Level Overview
  • A150 System Features
  • System Controller Hardware and Specifications
  • Monitoring Controllers, Probes and Sensors

About the Author

Louis Chompff - Founder, AnD Cable Products, Rack and Cable ManagementLouis Chompff – Founder & Managing Director, AnD Cable Products
Louis established AnD Cable Products – Intelligently Designed Cable Management in 1989. Prior to this he enjoyed a 20+ year career with a leading global telecommunications company in a variety of senior data management positions. Louis is an enthusiastic inventor who designed, patented and brought to market his innovative Zero U cable management racks and Unitag cable labels, both of which have become industry-leading network cable management products. AnD Cable Products only offer products that are intelligently designed, increase efficiency, are durable and reliable, re-usable, easy to use or reduce equipment costs. He is the principal author of the Cable Management Blog, where you can find network cable management ideas, server rack cabling techniques and rack space saving tips, data center trends, latest innovations and more.
Visit https://andcable.com or shop online at https://andcable.com/shop/